If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+3x-4=3
We move all terms to the left:
10x^2+3x-4-(3)=0
We add all the numbers together, and all the variables
10x^2+3x-7=0
a = 10; b = 3; c = -7;
Δ = b2-4ac
Δ = 32-4·10·(-7)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-17}{2*10}=\frac{-20}{20} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+17}{2*10}=\frac{14}{20} =7/10 $
| .4t+.15=t-1.35 | | -45=2b+3+8b | | 8p+5=7p+11 | | 7(b+3)=-14 | | 7(b+3=-14 | | (m-13)(m+13)=0 | | 27x-32=-10x-110 | | 4=(8y-7)-(9+3y) | | 8(3-z)=4 | | 5*6x=20 | | -1/4y=8 | | 2/5x-1/6=9/2-2x | | n-1*12=7 | | 5y-(7+2y)=9 | | 9/n=2/7/12 | | 7(6+w)=(2+w) | | 5b+11=66 | | (a-4)=4a-(29+4) | | (2x-5)=(3x-5) | | 7d²-3d=5 | | 11x^2-55x=0 | | 8(42-1)-12=1(2u-16) | | t×t-3t-20=0 | | 4x^2-13x=66 | | -24=-(4/7x) | | C=2r=2(8)=16 | | 2a/10=a+10/8 | | 2z+7=79 | | 8n-(4n+7)=13 | | 5.3=7.4-0.3x | | (x-8)(x+8)=0. | | 5(2x-2)=4(3x-3) |